Neonatal exposure to PFOS and PFOA in mice results in changes in proteins which are important for neuronal growth and synaptogenesis in the developing brain.
نویسندگان
چکیده
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) belong to the family of perfluorinated compounds. They are used in industrial and consumer applications, e.g., clothing fabrics, carpets, and food packaging. PFOS and PFOA are present in the environment and are found in dust and human milk, which implies that newborns and toddlers can be directly exposed to these agents during brain development. Recently, we reported that PFOS and PFOA can cause neurobehavioral defects and changes in the cholinergic system, in the adult animal, when given directly to neonatal mice, and thereby showing similarities with other investigated persistent organic pollutants, such as dichloro-diphenyl-trichloroethan, polychlorinated biphenyls, and polybrominated diphenyl ethers (PBDEs). In recent studies, we have also seen that highly brominated PBDEs can affect the levels of proteins that are important for neuronal growth and synaptogenesis in the neonatal mouse brain. The present study shows that a single oral dose of either 21 micromol PFOS or PFOA/kg body weight (11.3 or 8.70 mg), given directly to the neonatal mice on postnatal day 10, significantly increased the levels of CaMKII, GAP-43, and synaptophysin in the hippocampus of the neonatal mouse. Both compounds significantly increased the levels of synaptophysin and tau in cerebral cortex, and PFOA also increased the levels of tau in hippocampus. These proteins are important for normal brain development, and altered levels of these proteins during a critical period of the brain growth spurts could be one of the mechanisms behind earlier reported behavioral defects.
منابع مشابه
A single neonatal exposure to perfluorohexane sulfonate (PFHxS) affects the levels of important neuroproteins in the developing mouse brain.
Perfluorohexane sulfonate (PFHxS) is an industrial chemical and belongs to the group of perfluorinated compounds (PFCs). It has recently been shown to cause developmental neurobehavioral defects in mammals. These compounds are commonly used in products such as surfactant and protective coating due to their ability to repel water- and oil stains. PFCs are globally found in the environment as wel...
متن کاملThe impact of COVID-19 during pregnancy on fetal brain development
The development of the brain as the most complex structure of the human body is a long process that begins in the third week of pregnancy and continues until adulthood and even until the end of life (1). Human brain myelination begins one to two months before birth in the visual system and eventually lasts until the age of two in other sensory systems and then the motor systems (4). Processes a...
متن کاملA comparison of developmental and maternal toxicity of Perfluoro octane sulfonate (PFOS) in Mouse: Evaluation of histopathological and behavioral changes
Perfluorooctanesulfonate (PFOS) is a widely spread environmental contaminant. It accumulates in the brain and has potential neurotoxin effects. Due to chemical properties, PFOS shows persistency in the environment and therefore has potential hazardous effect. The risk of possible intra uterine exposure to PFOS poses a health concern for developmental effects. The goal of this study was survey o...
متن کاملEvaluation of the Protective Effect of Astaxanthin Against Undesired Effects of Prenatal Bacterial Lipopolysaccharide (LPS) Exposure on Maternal Behaviors and Neuronal Changes of Adult Male Offspring in NMRI Mice
Background: Prenatal bacterial lipopolysaccharides (LPS) exposure causes damage of the brain and gonadal system.The aim of this study included determination of astaxanthin effect to ameliorate undesired effects of bacterial LPS during fetal period and improve maternal behavior, body weight and length and neural changes in adult male NMRI mice. Methods: Pregnant female mice were divided into fou...
متن کاملEffects of male phermoneses on neuronal morphology in the dentate gyrus of hippocampus of female Mice
Background & Aims: Neurogenesis in the adult mammal brain occurs throughout life. Adult neurogenesis has been clearly demonstrated in the sub granular zone (SGZ) of the dentate gyrus (DG) in the hippocampus. Pheromones that plays an essential role in the development of the central nervous system. The male pheromones are involved in regulating neurogenesis in both the olfactory bulb and hippocam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 108 2 شماره
صفحات -
تاریخ انتشار 2009